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Quantum computers have the potential to facilitate extraordinary breakthroughs that will 

completely transform modern society: lives could be saved by more efficient and effective drug 

designs; discovery in materials science could be revolutionized by simulations of quantum 

processes; and internet encryption as we know it could be broken and then replaced by much 

more secure methods [1,2,3]. Or maybe quantum computers will never do anything useful [4]. 

Much of the public’s confusion concerning the current state of quantum computing comes from 

receiving mixed messages about what is possible in theory versus what can be achieved in 

reality. The amazing theoretical capabilities of quantum computers are based on having 

registers of qubits that can exhibit exotic properties, such as superposition and entanglement, 

that are not available to registers of classical bits. However, those seemingly omnipotent 

quantum computation resources are fragile in the face of noise and are also difficult to control. 

The challenge before every organization currently attempting to realize practical quantum 

computing is to build quantum hardware that is big enough, is sufficiently robust against 

errors, and possesses sufficient control fidelity so as to outperform the world’s most powerful 

classical computers at tackling some of the world’s most challenging computational problems 

(nobody claims that every computation will be faster, better, or cheaper on a quantum 

computer). The technical hurdles are daunting—and some argue that they are insurmountable. 

There are two dominant approaches in play for achieving practical quantum computing (QC) 

at an industrial scale: gate model (GM), also known as the circuit model, and quantum annealing 

(QA) (the term adiabatic quantum computing refers to the same general concept). Superficially, 

these approaches are often portrayed as being completely unrelated, but careful examination 

reveals that the models can be equivalent [5]. Nonetheless, GM and QA are markedly different 

approaches in practice, which has considerable bearing on their prospects for achieving 

practical advantage over classical computers. D-WaveTM is the only company that builds, sells, 

and sells time on, annealing-based quantum computers [6]. 

For over a decade, D-Wave has focused on delivering practical quantum computers aimed at 

solving NP-hard problems. A somewhat restricted version of QA was selected for this purpose 

because it is more robust against noise than known approaches to GM. Although the restricted 

model is general enough to express any Turing-computable function, this choice meant 

temporarily foregoing some of the grander goals of quantum computing, such as efficiently 

solving the Schrödinger equation for a large number of electrons; the company intends to 

remove this restriction at some future date. 

The strategic decision to prioritize increasing qubit counts and developing a strong user base 

over implementing the fully-general computational model provided the impetus for 

subsequent developments, such as successful deployments of commercially available QA 

systems starting in 2011, a sixteen-fold increase in qubit counts in later systems [the D-

Wave 2XTM (1000 qubits) system, and the D-Wave 2000QTM (2000 qubits) system shown in 

Figure 1, are in current use], and the proliferation of more than 100 early-phase applications 

implemented on D-Wave products.  

This article provides a snapshot of where D-Wave currently stands and where we expect to 

go in our quest to build useful quantum computers. We begin with a brief introduction to the 



physics of quantum annealing and a description of D-Wave processors from the user’s 

perspective. An overview of how D-Wave systems have been used to date and a survey of 

the current state of understanding regarding performance of these quantum computing 

systems is then provided. Looking to the future, we offer six evidence-based predictions 

pertaining to annealing-based quantum computers that we anticipate will come to pass 

within 2 to 5 years. 

 

Figure 1. A D-Wave 2000Q quantum processing unit (QPU). It is a superconducting circuit containing 

2048 qubits, and it is operated at a temperature below 20 mK. 

 



 

 

Several sources are available that describe the physics of QA in detail [7,8]. For brevity, all that 

will be stated here is that QA is a means of harnessing the physics of quantum phase transitions 

for performing computations. Here, a phase transition is defined as a discrete change in some 

macroscopic property of a physical system that has been induced by tuning an external control 

parameter. As implemented by D-Wave, the physical system is a network of qubits that are 

pairwise coupled and biased in a way that encodes an NP-hard problem of interest. The goal 

is to find a configuration of spin values (+1 and -1) that can be assigned to the qubits such that 

the cost function of the NP-hard problem is minimized. Such a configuration is referred to in 

physics terms as a ground state.  

 

Figure 2. Qubits are represented by colored spheres and interactions by solid bars. QA begins with all 

qubits uncoupled and their states completely uncorrelated, as indicated by mixed colors (+1 = red, -1 = 

blue) on each sphere. As QA progresses, the interactions are slowly added and correlations between 

qubits become more apparent. At some critical point in the anneal, the states of the qubits become 

strongly correlated. In this simple example, there are two ground states corresponding to all-red (+1, +1, 

+1) or all-blue (-1, -1, -1). Upon approaching the critical point from the disordered phase, the system is in 

an equal superposition of the two ground states, indicated by spheres that are half red/half blue. In 

passing through the critical point, the system is forced to randomly choose to be in one of those ground 

states, which is subsequently read. 

As illustrated in Figure 2, the method involves initializing the qubits in a quantum state that 

broadly explores all possible solutions, and then slowly ramping up the relative strength of the 

NP-hard problem couplings and biases. One iteration of this process is referred to as an anneal. 

At some critical point during the anneal (there may be more than one), the system can undergo 

a phase transition from a disordered quantum paramagnetic phase to an ordered classical 

magnetic phase. The final state that is measured after passing through the phase transition is a 

potential solution to the NP-hard problem. The key physics that one hopes to harness in QA is 

the formation of entangled quantum states with long-range correlations between individual 

qubits that persist during the phase transition, which enhances the probability of finding the 

system in a ground state at the end of the anneal. 



 

The quantum processing unit (QPU) of a D-Wave quantum computer carries out the annealing 

process described above. Like all quantum computing devices being built today, the QPU runs 

within a classical framework resembling the familiar von Neumann architecture containing an 

arithmetic logic unit (ALU), memory, I/O, and a control unit. The QPU can be thought of as an 

ALU-like quantum circuit containing an arrangement of qubits and pairwise couplers, 

combined with a specialized control system. The network of qubits and couplers is 

programmed using a powerful and flexible quantum machine instruction (QMI) that is defined 

by a set of parameters that specify the desired output and how to obtain it. The output consists 

of a vector S of spin values 𝑆𝑖 ∈ {±1}. 

The most important component of the QMI is the specification of the desired output according 

to input vectors (ℎ, 𝐽). These are inputs to the Ising model (IM) optimization problem: Given a 

graph 𝐺 = (𝑉, 𝐸) with fields ℎ𝑖 on vertices 𝑉 and interactions 𝐽
𝑖𝑗

 on edges 𝐸, find a spin vector 

𝑆 that minimizes the objective function 

 

𝐸(𝑆) =  ∑ 𝐽𝑖𝑗𝑆𝑖𝑆𝑗

 (𝑖,𝑗)∈𝐸

 + ∑ ℎ𝑖𝑆𝑖

𝑖∈𝑉

. 

 

This problem is NP-hard when G is nonplanar. To invoke a QMI, the user provides the values 

for ℎ = {ℎ𝑖} and 𝐽 = { 𝐽𝑖𝑗}, and an anneal time interval 𝑇. Furthermore, as with all real-world 

quantum computing today, there is a chance that physical limitations of the device or 

interference from external noise will have an adverse effect on the calculation. This means that 

the QPU does not guarantee to return a ground state solution every time; thus, it is prudent 

and cost-effective to repeat the anneal many times for each input. For this reason, the user must 

also specify 𝑅, the number of solutions to be returned.  

A variety of annealing protocols are supported through additional parameters to the QMI, 

called anneal path features. For example, the anneal can be specified as a piecewise linear 

waveform that can be used to alter the evolution near a phase transition. It is also possible to 

adjust the individual qubit annealing schedules to a limited degree by specifying anneal 

offsets. The reverse anneal protocol allows the user to specify initial qubit values and explore 

nearby solutions.  

Note that in contrast to GM, programming an annealing-based QPU does not involve writing 

out step-by-step instructions for accomplishing the task at hand. Instead, the user specifies the 

desired result—an optimal spin assignment for the objective function defined by inputs (h, J)—

together with parameters specifying how to accomplish the result, and the quantum algorithm 

implemented in hardware does the rest. This indicates that the natural programming paradigm 

for QA is declarative rather than imperative in nature. Examples of declarative programming 

languages in classical computation include Prolog for logic programming and SQL for 

computations on databases.  

The declarative paradigm makes possible a simple and scalable interface for using the QPU, 

which is an important component of D-Wave’s efforts to make quantum computers available 

to a broad spectrum of potential users. The LeapTM Quantum Application Environment, which 



provides real-time cloud access (with limited free option available) to D-Wave systems, is a 

new piece of this long-term strategy. Visit www.dwavesys.com to learn more, and to find 

descriptions of the latest QMI variations and support tools (such as post-processing utilities 

and hybrid quantum-classical computing frameworks).  

 

The core operation of the QPU is to return a sample of 𝑅 solutions to a given IM input (ℎ, 𝐽). All 

NP-hard problems can be translated to IM using well-understood methods from NP-

completeness theory, which means that in principle this core operation applies to those 

problems as well. Solving a given application problem P using the quantum processor involves 

a few discrete tasks, as described below and illustrated in Figure 3. 

Translate inputs for P to inputs for IM or QUBO. The IM problem is defined above for spin 

values (-1, +1); the quadratic unconstrained binary optimization (QUBO) problem is equivalent 

but defined on binary values (0, 1). The QPU interface accepts either format. Cookbook 

methods are known for translating many NP-hard problems to IM or QUBO [9]. Note that 

some problems are more suitable for this approach than others, depending on how much input 

expansion is created by the translation. 

Decompose or distill the problem. If a given input turns out to be too big to fit on the QPU, 

the input can be decomposed by breaking into pieces that are solved separately (note the 

piecewise solutions may not be part of an optimal solution to the full problem). This approach 

does have its limits, in the sense that a given problem instance may be less suitable if only a 

small part of the overall structure can be represented on the quantum hardware. 

Minor-embed the input. An IM or QUBO input is defined by weights assigned to the vertices 

and edges of general graph 𝐺 = (𝑉, 𝐸). These weights must be mapped to the qubits (vertices) 

and couplers (edges) inside a D-Wave QPU, which do not have general connectivity; instead, 

they have a so-called Chimera graph structure C. Mapping G onto an equivalent representation 

in C involves a process called minor-embedding. Tools for minor-embedding are available in 

the D-Wave software library, although problem-specific custom embedders can sometimes 

give better results. 

Query the QPU. An input of suitable format and size can be sent to the QPU together with 

appropriate parameter settings; note that well-chosen parameter settings can sometimes 

dramatically improve solution quality. Besides this one-shot approach to problem solving, the 

QPU can be incorporated in a hybrid approach that performs a sequence of QPU queries 

interleaved with a classical computation that modifies (h, J) between queries. This approach is 

used, for example, during the training cycle in machine learning applications. 

Return the results. The classical infrastructure for the QPU (optionally) post-processes the 

results and then maps embedded problems back to their unembedded form. Solutions in 

IM/QUBO representation must also be translated back to their original form. 

 

http://www.dwavesys.com/


 

Figure 3. Steps in the problem-solving 

workflow. An input for the NP-hard circuit-

satisfaction problem is a description of a logic 

circuit: the goal is to find an assignment of 

inputs that makes the circuit evaluate to 1. 

This input is translated to a graph 

representation for IM or QUBO (weights are 

not shown here); then it is minor-embedded 

onto a Chimera graph (the extra red arcs are 

created during embedding).  

This representation of the input is sent to the 

QPU via the QMI; and the results are read 

and translated back to the original problem. 

Assuming noise and control errors are 

adequately suppressed, the sample of R 

results from the QPU contains a valid output 

for this input. 



 

This section gives a brief summary of what is known about suitable applications and about 

performance of D-Wave processors to date. Note that this work is far from finished, and many 

questions remain unanswered.  

 

Two recent meetings of the D-Wave user group (Qubits Europe 2018 and Qubits North 

America 2018) showcased the variety of early-phase applications that have been implemented 

on D-Wave QPUs [10]. Table 1 lists some applications described at those meetings that were 

run on either a D-Wave 2000Q (2000 qubits) or a D-Wave 2X (1000 qubits) (the last few are 

applications in machine learning). Overall, in recent years about 100 early applications 

developed by research institutions and commercial enterprises, ranging from proof-of-concept 

to nearly-industry-ready, have been demonstrated to run on D-Wave QPUs. 

Table 1. Sample Applications for Quantum Annealing Processors 

 

Table 1 also illustrates the wide variety of use cases that are compatible with this approach. 

Some cases (e.g., factoring) require ground-state solutions; many (e.g., traffic flow 

optimization) require good solutions in short time frames; and some (e.g, portfolio selection) 

require diverse samples of solutions. As well, some applications in machine learning require 

samples drawn from a Boltzmann distribution on the solution set; and some applications in 

quantum simulation require distributions sampled from entangled quantum states mid-

anneal. This latter case was made possible using anneal path features that have been recently 

developed. 

 



 

While the expanding list of early-phase applications for QA is encouraging, its existence does 

not answer the most important question: Can annealing-based quantum processors 

outperform classical approaches for solving hard computational problems? Not surprisingly, 

this question is a subject of vigorous current research. Presentations at user group meetings, 

and papers published by researchers in academia and industry, describe work to evaluate 

D-Wave quantum systems under many definitions of performance. This body of work is very 

briefly summarized here.  

First, complexity-theory versions of the question—evaluating abstract QA algorithms in terms 

of asymptotic worst-case performance—remain open. Note that empirical results cannot be 

used to settle open questions in complexity theory, since the latter contain universal quantifiers 

over infinite sets. As well, theoretical results tend to have little relevance to practice, since they 

assume noise-free computations and focus on worst-case performance bounds.  

Second, a physics-based version of the question looks for a phenomenon known as quantum 

speedup, comparing QPU performance terms of runtime scaling on synthetic inputs, to 

classical heuristics, under best-case (optimally tuned) conditions [11]. An observation of 

“limited quantum speedup” has been reported, but the general question remains open [12]. 

Note that results about quantum speedup also tend to have little relevance to practice: the 

synthetic inputs do not resemble real-world inputs and the scaling analysis ignores constant-

factor speedups, sometimes favoring the QPU by many orders of magnitude [13], that are of 

keen interest to the practitioner.  

Third, from the practitioner’s point of view, answering the question requires identifying 

applications and use cases for which the QPU—together with the classical framework 

supporting the workflow tasks described earlier—can outperform standard classical 

alternatives. Here, performance has many meanings, often involving combinations of speed, 

solution quality, cost, and energy consumption. In this arena, a handful of cases have been 

found for which current-sized quantum systems can outperform classical alternatives to a 

modest extent. Here are two examples from Qubits North America 2018:  

• Ushijima-Mwesigwa et al. [14] looked at a graph partitioning problem arising in molecular 

dynamics simulation; they reported that a D-Wave 2000Q QPU, combined with the 

qbsolv decomposition tool [15], found solutions of equal and sometimes better quality 

than state-of-the-art classical approaches. 

• Tanahashi et al. [16] reported that a similar decomposition method found better solutions 

faster than their industry-standard approach, when applied to a problem of finding 

optimal listing orders for online search results.  

While these results are encouraging, they must be tempered by the knowledge that superior 

classical methods for solving those particular problems may someday be found. For that 

matter, better methods for using the QPU may also be found: it is a property of the NP 

complexity class that empirical work on these types of questions should never be considered 

finished. An industrial user of QC technology may prefer having the means in hand to quickly 

solve the problem, as opposed to spending time and money searching for better algorithms 

that may or may not be found. 

A few general observations about performance of D-Wave quantum processors gleaned from 

the research literature and reports of users’ experiences are listed below.  



QPUs exhibit fast convergence to good solutions. A D-Wave QPU routinely returns near-

optimal solutions within a few anneals, but then may require a significantly larger number of 

anneals to find at least one ground state. The reason for this phenomenon may be a 

combination of noise, physical limitations of the system, and finite precision representation of 

the IM parameters on-chip.  

Size matters. If an input is too small or too easy, a classical solver using nanosecond-scale 

instruction sets can find solutions in times well below 10 ms, the time needed to set up the 

problem on a current-generation QPU. On the other hand, if the input is too large to fit on the 

QPU, it must be decomposed, as described earlier: doing so adds classical overhead time and 

may impact solution quality, and can therefore only be effective if raw performance on QPU-

sized problems is differentiated enough to overcome that overhead.  

This suggests the existence of a sweet spot with respect to input size: an ideal problem must 

be small enough such that substantial portions of it fit on current hardware but also big enough 

(and hard enough) that it cannot be solved quickly by purely classical means. Tests of smaller 

previous-generation QPUs on real-world application problems revealed very few cases that 

meet both criteria; however, as mentioned above, there is some evidence that the current 2000-

qubit systems are becoming large enough to break even with or slightly outperform classical 

counterparts on problems involving finding near-optimal solutions. 

Favorable phase transitions lead to better performance. As a condition for an annealing-based 

quantum computer to perform well, the input should have features that elicit the special 

capabilities of the QPU that are not available to classical solvers. This observation has 

implications for identifying input sets that are most suitable for demonstrations of quantum 

speedup, as well as for demonstrating substantial quantum performance advantage on wide-

ranging applications. Much work is needed to identify large application inputs that exhibit 

such features, and to understand how to tune system parameters for best performance on those 

inputs. Of course, one prerequisite for this work is having QPUs large enough to study 

suitably-sized inputs.  

Infrastructure is key. As discussed above, the quantum algorithm runs within a classical 

support framework that provides tools for transforming, decomposing, and embedding 

inputs. Basic tools for performing these tasks, as well as for other types of support, are available 

in D-Wave software libraries and GitHub repository [15,17]. However, there is much room for 

improvement, in terms of both performance and application scope.  

Note that this discussion of performance refers to raw QPU performance, without the use of 

error mitigation or error correction schemes that would presumably be necessary for current 

versions of GM QPUs to achieve comparable results on similarly-sized inputs. This illustrates 

the observation in the introduction that QA is fundamentally more robust against noise than 

GM, an important consideration in D-Wave’s early selection of this paradigm.  



 

The current generation quantum systems manufactured by D-Wave are but a step on the path 

to realization of industrially-relevant quantum computing. Looking beyond that goal, an 

internal research program begun within the past couple years targets the longer-term objective 

of building fully-general quantum computers (called universal quantum computers, which have 

different properties than universal Turing machines).  

While the amazing innovations mentioned in the beginning of this article may be considered 

strong motivation for making the attempt in the first place, predicting the feasibility and timing 

of major technology-driven societal changes is beyond our ken. However, based on ongoing 

empirical work and our current understanding of past and current D-Wave systems, we 

describe below some improvements to next-generation QA technologies we are confident will 

come to pass within the next two-to-five years. 

Next-generation architectures will solve much larger problems. D-Wave is currently 

developing a new architecture (called PegasusTM) that will contain more qubits, more inter-

qubit couplers, and higher coupler count per qubit (i.e., greater connectivity). The anticipated 

benefits for the end-user include the ability to represent larger inputs in hardware, to find 

better embeddings leading to better solution quality and higher ground-state probabilities, and 

to experience lower overhead cost for performing embeddings.  

For these reasons, we believe that the next architecture will be able to show differentiated 

performance at solving a wider range of industry-relevant problems than is currently possible, 

and that this trend will continue in subsequent generations. 

Error and noise suppression will keep pace with increasing qubit counts. We are not aware 

of any fundamental impediments to building ever-larger QA-based QPUs. However, 

increasing processor size and complexity is only worth doing if control precision and noise 

suppression can also be scaled up. D-Wave has a continuously running materials science 

program to reduce noise, which is closely linked to our mainstream QPU fabrication program. 

Every successive generation of D-Wave QPUs to date has made use of new technologies that 

improve control precision, and work is on track to do so again with our next-generation QPU.  

Suppression of noise and control errors means that the near-optimal solutions found quickly 

by the QPU are generally better: that is, closer to optimal or more likely to be optimal. We 

believe that these innovations will broaden the set of use cases where demonstration of a 

quantum performance advantage may be possible. 

New QMI parameters will lead to better performance and wider applicability. Much of the 

recent excitement surrounding D-Wave QPUs has been related to their use in the context of 

quantum simulation [18,19]. When used in this mode, the task for the QPU is not to solve a 

classical problem, rather it is to expose the physics of a given quantum system via 

measurement of qubit states at intermediate points during the anneal. Expanding this 

capability required development of new features and new QMI parameters; these features will 

be released to all users. 

In the longer term, D-Wave scientists will continue to research means to build additional 

controls into the QPU that will enhance and expand upon current capabilities. (This includes 

modifications aimed at realizing a universal quantum computer, although at present we cannot 

predict precisely how that research timeline will unfold.)  



We anticipate developing a better understanding of how to use these new capabilities by 

making them available to a diverse and rapidly growing user community. We believe that 

these features will lead to better ways to use the QPU to solve industrially relevant problems 

as well as performing quantum simulation experiments of interest to science.  

Efficient bigger-than-chip solvers will be developed. We have found that many industrially 

relevant problems are bigger than near-term QPUs, and thus see an urgent need for 

development of hybrid classical-quantum solvers that work by decomposing inputs, as 

discussed in a previous section.  

D-Wave Hybrid, a framework to support this development work, is available in the D-Wave 

GitHub repository [13]. Several prototype solvers exist that demonstrate the value of 

connecting industrial users to the QPU in this way [20] and more are under development. This 

is the subject of much current research both internally at D-Wave and by the growing user 

community, and we anticipate rapid improvements in the near term. 

More-effective software infrastructure will broaden the range of applications. Discovery of 

better translation and embedding methods, introduction of new and better post-processing 

utilities, and automatic choice of QMI parameters, will be effective at changing that tipping 

point from “competes with” to “outperforms” classical alternatives for an ever-expanding 

range of application problems. Work on developing better classical support tools surrounding 

the QMI is ongoing, and better tools will continue to be made available. 

While many real-world use cases will be able to find quantum advantage with loose integration 

of classical and quantum processing components (i.e. with a small number of QPU queries per 

problem), many applications will need tighter integration. In particular, effective hybrid 

solvers will require low-latency couplings between the classical and quantum portions, leading 

to geographic co-location of classical and quantum processing components, with appropriate 

security and scheduling mechanisms in place. D-Wave is working on developing new 

techniques to support tighter integration of classical/quantum processors, which should yield 

improvements in overall workflow efficiency. 

Hybrid solution methods will outperform purely classical or quantum methods in some 

cases. Together with improvements in the size and performance of the QPU, increased 

flexibility of the QMI, and more efficient infrastructure support, we anticipate an upsurge in 

the development of efficient and effective hybrid algorithms that interleave quantum and 

classical computations. These hybrid solutions will combine the best attributes of quantum and 

classical processors: finding good solutions fast and transforming good solutions into optimal 

ones, respectively. 

Very preliminary work on these approaches suggests that they show promise to deliver 

differentiated performance as quantum systems continue to grow and improve.  



 

Of all the quantum computing platforms currently under development, in our view annealing-

based quantum computing offers the most viable way forward to connect quantum hardware 

to real-world applications. Providing annealing-based QPUs as part of a complete computing 

platform within a declarative paradigm has made this nascent technology accessible for a large 

number of users who, in turn, are helping to drive this approach forward. The development of 

a QA user ecosystem can be directly attributed to D-Wave’s strategic decision to develop a 

technological model that puts applications performance first, and that prioritizes 

demonstrations of usefulness for tackling real-world problems. 

The D-Wave technology development program works in a tight feedback loop with 

practitioners and users, which provides a foundation upon which to build next-generation 

systems. Because of this approach, we see a clear path forward to improving performance, 

which we believe will allow us to demonstrate broader industrially-relevant performance 

advantages over classical computing within the next few years.  
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