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some initial performance results for simple, standard Ising model classes
of problems.
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1 Introduction
This paper describes D-Wave’s next-generation processor topology; that is, the pattern that
defines how the processor’s qubits and couplers interconnect. The flexible architecture of
these new processors supports simple design modifications able to produce various topolo-
gies: the Pegasus family of topologies.

Pegasus is a significant advancement over D-Wave’s Chimera topology, which is available
in the 2000Q product and its predecessors. Pegasus features qubits of degree 15 and native
K4 and K6,6 subgraphs.

Advantages of this new topology include:

• more efficient embeddings of cliques, bicliques, 3D lattices and penalty models, and
improved heuristic embedding run times;

• novel class of couplers that help error correction schemes, boosting energy scales and
providing parity/auxiliary qubits; these are also useful in encoding various logical
constraints.

2 Pegasus Family of Topologies
This section presents a general definition of processor topologies for the Pegasus family,
Pegasus(x). Where the document simply refers to “Pegasus”, it is our target initial release,
Pegasus(0). Similar to our use of the Cn notation for a Chimera graph with size parameter
n, we refer to instances of Pegasus topologies by Pn; for example, P3 is a graph with 144
nodes.

In Pegasus as in Chimera, qubits are “oriented” vertically or horizontally. In Chimera, there
are two types of coupler: internal couplers connect pairs of orthogonal (with opposite ori-
entation) qubits, and external couplers connect colinear pairs of qubits (that is, pairs of
qubits that are parallel, in the same row or column). The Pegasus family has, in addition to
Chimera’s internal and external couplers, a third type: odd couplers. Odd couplers connect
parallel qubit pairs in adjacent rows or columns; see Figure 1.

In the Chimera topology, qubits are considered to have a nominal length of 4 (each qubit
is connected to 4 orthogonal qubits through internal couplers) and degree of 6 (each qubit
is connected to 6 different qubits through couplers). In the Pegasus family, qubits have a
nominal length of 12 and degree of 15.

2.1 Formulaic Description of Pegasus Topologies

In broad strokes, a PM contains 24M(M − 1) qubits, and has maximum degree 15. The
Pegasus(0) topology contains 8(M− 1) qubits which are disconnected from the main pro-
cessor fabric, for a total of 8(3M− 1)(M− 1) qubits in the main fabric. For example, a P16
contains 5760 qubits in total, and 5640 in the main fabric.

Copyright © D-Wave Systems Inc.
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Figure 1: Roadway-style drawing of qubits (dots) and couplers (lines) in a P3-sized Pegasus(0) pro-
cessor, where curved blue lines are “internal” couplers, long red lines are “external” couplers, and
short red lines are “odd” couplers.
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Figure 2: Straight-line drawing of qubits (dots) and couplers (lines) in a P3-sized Pegasus(0) proces-
sor, where blue lines are “internal” couplers, long red lines are “external” couplers, and short red
lines are “odd” couplers.
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Let M be a positive integer, and s a vector of length 12 consisting of even values between 0
and 10 inclusive. The contents of s are called shifts, and we write

s = (s(v)0 , s(v)1 , · · · , s(v)5 , s(h)0 , s(h)1 , · · · , s(h)5 ),

separating s into vertical (v) and horizontal (h) shifts.

The qubits for P = Ps
M are defined by the cartesian product

V(P) = {0, 1} × {0, · · · , M− 1} × {0, · · · , 11} × {0, · · · , M− 2}.

For easier description, we name the coordinates of qubits. For a qubit (u, w, k, z) in V(P):

• u is the orientation, indicating if a qubit is vertical (u = 0) or horizontal (u = 1).

• w is the perpendicular tile offset, indicating the index of the qubit’s tile, in the orienta-
tion perpendicular to u. (That is, if u = 0, then w is a horizontal (column) index, and
if u = 1, then w is a vertical (row) index.)

• k is the qubit offset, indicating the index of a qubit within a tile.

• z is a the parallel tile offset, indicating the index of the qubit’s tile in the orientation
parallel to u. (That is, if u = 0, then z is a vertical (row) index, and if u = 1, then z is
a horizontal (column) index.)

These coordinates are shown in Figures 3 and 4.

In the following description of the three types of couplers, a coupler p ∼ q exists whenever
both p and q are contained in V(P). Descriptions of the first two types are simple; the third
includes a delta function, δ(a < b), defined as being equal to 1 if a < b and to 0 otherwise.
The three sets of Pegasus couplers are:

• external: (u, w, k, z) ∼ (u, w, k, z + 1)

• odd: (u, w, 2j, z) ∼ (u, w, 2j + 1, z)

• internal: (0, w, k, z) ∼ (1, z + δ(j < s(v)bk/2c), j, w− δ(k < s(h)bj/2c))

The Pegasus(0) topology is defined by

s0 = (2, 2, 10, 10, 6, 6, 6, 6, 2, 2, 10, 10)

and written PM = Ps0
M.

A column in Pegasus is indexed by a triple (u = 0, w, k) and a row is indexed by a triple
(u = 1, w, k). The qubits of a single row or column, namely {(u, w, k, z) : 0 ≤ z ≤ M− 2},
form a path connected by external couplers, which is useful for creating chains.

We define an integer labeling for Pegasus with function

(u, w, k, z) 7→ z + (M− 1)(k + 12(w + Mu)),

which is a bijection between the 24M(M− 1) coordinate labels and the interval

{0, · · · , 24M(M− 1)− 1}.

Copyright © D-Wave Systems Inc.
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Vertical coordinates (u = 0, w, k, z):
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Figure 3: Coordinates of vertical qubits in a Pegasus P3 processor.
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Horizontal coordinates (u = 1, w, k, z):
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Figure 4: Coordinates of horizontal qubits in a Pegasus P3 processor.
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The main fabric of the processor, the largest connected component, occurs for those (u, w, k, z)
with

u = 0 and min
0≤t<6

s(h)t ≤ 12w + k < 12(M− 1) + max
0≤t<6

s(h)t ,

or
u = 1 and min

0≤t<6
s(v)t ≤ 12w + k < 12(M− 1) + max

0≤t<6
s(v)t .

3 Minor-Embedding
Much of the embedding support that exists for the Chimera topology may be extended
to the Pegasus family of topologies with relative ease. Known constructions for Chimera
embeddings of structured problems translate to Pegasus without modification, because
Chimera occurs as a subgraph of Pegasus.

For both structured and unstructured problems, heuristic, architecture-naive embedders
consistently produce shorter chains on Pegasus than on Chimera. Because longer chains
increase errors in problem specification and reduce logical-variable fidelity, we expect that
this reduction in chain length will significantly improve problem solving.

3.1 Clique and Biclique Embeddings

Embeddings of cliques (complete graphs) and bicliques (complete bipartite graphs) are very
similar to those in Chimera. This subsection briefly describes how to find those embed-
dings and reports maximum-yield formulas. We begin by finding elements common to
both topologies, namely rows and columns of qubits, and describing how to assemble these
into embeddings.

Optimal embeddings of complete bipartite graphs, ε : Ka,b → P, consist of a parallel paths
of horizontal qubits, each in a different row, and b parallel paths of vertical qubits, each in
a different column. The maximum-sized embedding produced this way is K12M−20,12M−20
with uniform chain length of M− 1.

Optimal embeddings of complete graphs, ε : Ka → P consist of a parallel paths of hori-
zontal qubits and a parallel paths of vertical qubits, connected at a point of intersection to
make a chains. The algorithm of [1] is easily modified to produce embeddings with chains
of length M and M + 1. Embeddings produced this way have size at most a = 12(M− 1).

Allowing longer chains, the embedding strategy of [2] can produce cliques of size up to
a = 12M − 10. We describe such an embedding by making a set of chain descriptors and
then showing how to translate these into chains for an embedding. A chain descriptor is a
set of triples (u, w, j), each of which is expanded into one of two lines of qubits,

{(u, w, 2j, z) : 0 ≤ z < M− 1} and {(u, w, 2j + 1, z) : 0 ≤ z < M− 1}.

Copyright © D-Wave Systems Inc.
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16 chains from A 12M − 26 Chains from B

Figure 5: Embedding of K62 in P6. See Section 3.1
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Figure 6: 3d lattice embedding, 2 × 2 × 12 → P3. Chains are shown as elongated blue loops, and
couplers associated with grid edges are shown as straight lines.

For M > 2, let

A = {{(0, 0, 3), (1, M− 2, 3)}, {(0, M− 2, 0), (1, M− 2, 1)}, {(0, M− 2, 2)},
{(1, M− 1, 4), (0, M− 2, 3)}, {(0, M− 1, 4), (1, M− 1, 5)},
{(1, 0, 4), (0, M− 2, 1)}, {(0, M− 1, 5), (1, M− 2, 0)}, {(1, M− 2, 5)}} ,

giving a set of eight chain descriptors. For the remaining 6M− 13 descriptors, define ρ =
(4, 0, 2, 1, 3, 5), and

B = {{(0, w, k), (1, w + δ(k > 1), ρ(k))} : 4 ≤ 6w + k < 6M− 9} .

Our entire set of chain descriptors is given by C = A ∪ B. To turn C into an embedding,
expand the descriptors into rows or columns of qubits,

E = {{(u, w, 2k + t, z) : (u, w, k) ∈ c, 0 ≤ z < M− 1} : c ∈ C, 0 ≤ t < 2} .

It is relatively straightforward to verify that the sets of qubits of E form the chains of an
embedding of K12M−10. Figure 5 shows an illustration for M = 6.

3.2 Cubic Lattice Embedding

As with clique and biclique embeddings, embedding the 3d cubic lattice is relatively straight-
forward with intuition from Chimera. Figure 6 shows an embedding of a 2× 2× 12 cubic
lattice in P3 with uniform chainlength of 2; in larger instantiations of Pegasus, PM, this em-
bedding can grow to (M− 1)× (M− 1)× 12. It is the simplest of a large number of cubic
lattice embeddings,

• (x, y, z)→ {(0, x, z + 4, y), (1, y + 1, 7− z, x)} for 0 ≤ z < 8, and

• (x, y, z)→ {(0, x + 1, z− 8, y), (1, y, 19− z, x)} for 8 ≤ z < 12.

Copyright © D-Wave Systems Inc.
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3.3 Selected 2d Lattice Embeddings

(a) Graphene lattice; a subgraph of Ps0
6 (b) Square grid with diagonals, Γ15 (embed-

ding not shown, see Section 3.3)

Figure 7: Two selected 2d lattices

Pegasus topologies enable many novel lattice embeddings. Embeddings like these ap-
pear to be useful for materials science; for example, computing magnetization phase di-
agrams. Figure 7(a) shows a proper subgraph of Pegasus isomorphic to a finite portion of a
graphene lattice. A subgraph, of course, may be interpreted as an embedding with chain-
length 1. We obtain the subgraph Λ shown in Figure 7(a) by deleting external couplers and
taking the induced graph on set

{(u, w, k, z) ∈ V(P) : (u = 1 and k ∈ {3, 7, 11}) or (u = 0 and k ∈ {0, 4, 8})}.

Taking a larger set,

{(u, w, k, z) ∈ V(P) : (u = 1 and k ∈ {2, 3, 6, 7, 10, 11}) or

(u = 0 and k ∈ {0, 1, 4, 5, 8, 9})},

we obtain AA-stacked bilayer graphene, K2 � Λ (where � denotes the strong graph prod-
uct). Similarly,

{(u, w, k, z) ∈ V(P) : (u = 1 and k ∈ {2, 3, 6, 7, 10, 11}) or

(u = 0 and k ∈ {0, 3, 4, 7, 8, 11})}

produces AB-stacked bilayer graphene. In the Chimera topology, these lattices require
chains of length at least 2.

With chains of length 2 in Pegasus, we can construct an embedding for a grid lattice with
horizontal, vertical and diagonal connections. An (n × n) grid is denoted Γn. In Table 1
is the embedding εx,y of a 3 × 3 subgrid, particularly the nodes [3x, 3x + 2] × [3y, 3y +
2]. Observe that ε0,0 is an embedding of Γ3 → P2. More generally, we can construct an
embedding of Γ3(M−1) → PM as a union of subgrid embeddings, εx,y for 0 ≤ x < M − 1
and 0 ≤ y < M− 1. In Chimera, this lattice requires chains of length 6.

Copyright © D-Wave Systems Inc.
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Row 3x Row 3x + 1 Row 3x + 2
Column 3y (0,x,2,y),(1,y,7,x) (0,x,8,y),(1,y,6,x) (0,x,7,y),(1,y+1,4,x)

Column 3y + 1 (0,x+1,0,y),(1,y,2,x) (0,x,11,y),(1,y+1,0,x) (0,x,6,y),(1,y+1,3,x)

Column 3y + 2 (0,x+1,3,y),(1,y,8,x) (0,x,10,y),(1,y,11,x) (0,x+1,4,y),(1,y,10,x)

Table 1: Embedding of the grid-with-diagonal lattice Γ3n

Figure 8: Embedding faceoff results, showing the mean and standard deviation of F(m, S, P6, C16) for
m = `, L, τ and S listed in Section 4.2.

4 Heuristic Embedding Results
This section presents a small-scale study to investigate performance trends in heuristic
embedding. Overall, we find that chains produced for Pegasus are on the order of 40% of
the lengths produced for Chimera and runtimes see a similar improvement. The heuristic
embedding algorithm used for this study is minorminer version 0.1.3, denoted A below.

4.1 Methodology

For problem s and topology T, we write c ∈ A(s, T) for chain c produced by algorithm A
for embedding s→ T. For a fixed number of trials, t, we define three metrics,

• average chainlength: `(s, T) = 1
t ∑t

i=1
1
|s| ∑c∈A(s,T) |c|,

• maximum chainlength: L(s, T) = 1
t ∑t

i=1 maxc∈A(s,T) |c|,

• average runtime: τ(s, T) is the time taken to produce the t embeddings, A(s, T), di-
vided by t.

Note that heuristic embedding algorithms cannot generally be expected to produce em-
beddings every time. To make these metrics sensible, we execute A(s, T) until we have
accumulated t embeddings and record the total time spent including failures.

Copyright © D-Wave Systems Inc.
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Now, let S be a set of problem graphs in a certain class. An embedding faceoff is a comparison
between two topologies, T1 and T2, for the three metrics above: A(s, T1) versus A(s, T2) for
all s ∈ S. Specifically, for a metric m, let

F(m, S, T1, T2) = {m(s, T1)/m(s, T2) : s ∈ S}.

4.2 Results

Figure 8 shows summary data for faceoffs between P6 (with 680 qubits and 4484 couplers)
and C16 (with 2048 qubits and 6016 couplers) for each of the problem sets listed below,
with t = 100. The following problem sets were chosen for their diversity, to show that
these trends are not a result of properties of a particular problem set:

• complete graphs, Kn for n = 20 to n = 29 (labeled clique in Figure 8),

• complete bipartite graphs, Kn,n for n = 22 to n = 31 (labeled biclique),

• circular complete graphs, K4n/n for n = 10 to n = 19 — these are graphs on 4n nodes
[0, 2n− 1] with edges between i and i + n + j mod 4n for j = 0, · · · , 2n− 1, (labeled
circular),

• not-all-equal-3SAT graphs near the critical threshold; 10 instances with size 35 (la-
beled nae3sat),

• Erdös-Rényi random graphs, G(n, p), with 10 instances each of

– G(70, .25) (labeled gnp25),

– G(60, .50) (labeled gnp50), and

– G(50, .75) (labeled gnp75).

Despite the P6 having fewer qubits and couplers than the C16, Pegasus consistently achieves
around a 50-60% reduction in chainlength over Chimera.

5 Treewidth
One measure of the complexity of a graph is its treewidth [3]. For example, the minimum
energy of an Ising model defined on a graph of treewidth t with n vertices can be found
in time O(n2t) using dynamic programming [4]. Here we show that the treewidth of the
Pegasus PM graph is between 12M− 11 and 12M− 4. For comparison, the treewidth of a
Chimera CM graph is 4M. In both cases, the treewidth is roughly the number of rows (or
columns) of qubits as described in Section 3.1.

To lower-bound the treewidth, consider embeddable complete graphs. A complete graph
Kn has treewidth n − 1, and complete graphs of size 12M − 10 can be embedded in PM.
It follows that the treewidth of PM is at least 12M − 11 (see for example [5, Lemma 15]).
To upper-bound the treewidth, we provide a vertex elimination order with an elimination
order width of 12M− 4 (see [6, Theorem 6] for background). One such variable elimination
order is as follows:

Copyright © D-Wave Systems Inc.
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Figure 9: A vertex elimination order for P3 with an elimination order width of 32.
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• eliminate vertical qubits, one parallel path column at a time;

• eliminate horizontal qubits in any column once all vertical qubits adjacent to them
have been eliminated.

An example of this variable elimination order for P3 is given in Figure 9. It is straightfor-
ward to verify that the width of this order is 12M− 4.

6 Error Correction
The additional connectivity of the Pegasus graph can be used to construct a simple error
correction scheme for quantum annealing. As in [7] and [8], we use multiple physical qubits
to encode a single logical qubit in a way that increases the energy scale of the logical Ising
problem.

In particular, let each pair of qubits joined by an odd-coupler represent a single logical
qubit. The resulting logical graph is similar to Pegasus but with half as many qubits, no odd
couplers, and typical degree 8 (see Figure 10). From a classical error-correction perspective,
this scheme is a simple repetition code: maintaining two copies of every variable allows
for error detection (when the copies are not equal) as well as error suppression (chained
qubits are likely to settle in the same state). However, because internal logical couplers
are represented by four physical couplers, and external logical couplers are represented by
two physical couplers, the energy scale at which the logical Ising model is represented is
doubled.

If external couplers are used exclusively to create chains in logical graphs (as Section 3.1
embeddings demonstrate for the cliques and bicliques), then logical problem interactions
are represented only using internal couplers, and this error correction scheme quadruples
the energy scale of the problem.

7 Topology Implications for Native Structured Ising
Models
This section presents results of testing phase-transition properties on simple and well un-
derstood benchmarks, as well as time-to-solution (TTS) results for standard classical algo-
rithms, on Pegasus and Chimera topologies.1 Ultimately the performance of these topolo-
gies will be assessed in the context of hard optimization and inference problems. Regard-
less of what problems these prove to be, it is interesting as a first step to understand the
interaction between the topology and the simplest standard Ising model classes it can ex-
press while exploiting all degrees of freedom (without embedding).

We also undertook simple studies of the impact of accelerator moves over these classes,
namely Houdayer moves and large-area local-search moves. We find that, within these
classes, the impact of accelerator moves is diminished in Pegasus—it appears to be more

1TTS is defined in this paper as the time required to solve a single problem instance with 50% probability.

Copyright © D-Wave Systems Inc.
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(a)

(b)

Figure 10: A simple error correction scheme for Pegasus, in which pairs of qubits joined by an odd
coupler are identified as a single logical qubit. In (a), each logical qubit is represented by a different
color. In the resulting logical graph (b), internal couplers are represented four times physically, and
external couplers are represented twice.
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difficult to accelerate optimization in random Pegasus problems compared to random Chimera
problems. TTS is also longer in Pegasus in typical cases across a range of methods.

Here we consider models defined by a problem Hamiltonian HP(x) = ∑ij Jijxixj. To min-
imize the impact of boundary effects, we use tori in all studies. The three cases discussed
are:

• Ferromagnet: Jij = −1, ∀ ij

• Maximum energy scale spin glass: Jij ∈ {−1, 1}, ∀ ij (independent and identically
distributed, i.i.d.), which is called RAN1

• Maximum entropy spin glass: Jij ∈ [−1, 1], ∀ ij i.i.d., which is called RANinf

7.1 Equilibrium Results in Ferromagnets and Spin Glasses

Ferromagnetic phase transitions may superficially appear irrelevant to algorithmic perfor-
mance in hard applications because ferromagnets are easy. Nevertheless, these transitions
provide some intuition and bounds on the performance of local search methods. Models
with larger transition values require stronger thermal or quantum excitations to explore the
phase space by local search, due to larger (free) energy barriers. Since no problem orders
more strongly than a ferromagnet, the ferromagnetic value provides a bound on the region
in which we may see slow dynamics. The ferromagnetic transition can also be informa-
tive on the dynamics of large unfrustrated subdomains (or Griffiths singularities) within
random problems, which can slow local-search methods in hard problems [9].

Spin-glass transitions, where they exist, are expected to present a hard barrier to local-
search methods, and an opportunity to demonstrate differentiation in dynamics. The classi-
cal spin-glass phase transition is expected to be zero for RAN1 and RANinf in these graphs,
and this has been argued to be one limitation in their use as benchmarks [10]. However, we
must bear in mind that even in the case of a zero-temperature transition, practical problems
are finite, and spin-glass-like ordering can impact algorithms. We find at the large-system
limit that spin-glass ordering is restricted to T → 0, but this decay to zero is more rapid in
Chimera than in Pegasus, so the landscape in Pegasus is in some sense rougher at a given
low temperature.2

Phase transitions are defined by singularities of the free energy F(T, A) = −T log− 1
T Ĥ in

the large-system limit, where Ĥ = ∑ij Jijσ
z
i σz

j − A ∑ σx
i . The classical transition is defined

for A = 0, whereas the quantum transition is defined in the limit T → 0. Based on collapses
of the Binder cumulant for the order parameter, we find (and plan to report elsewhere), the
preliminary values for phase transitions shown in Table 2. In this table, the maximum size
is 1176 for Pegasus and 1152 for Chimera and the number of models ranges from 1 to 400.

Critical behavior is consistent with known exponents. At the time of writing we have not
completed thorough studies on the quantum spin-glass transition, which is expected to be
finite and larger in Pegasus than in Chimera, and scalings qualitatively similar to the 2d
square lattice are anticipated [12]. Details of the methods will be presented elsewhere.

2This result is apparent in the scaling form, and will be presented in a separate document.
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Transition Type On Models Critical Value

Classical ferromagnet
Pegasus 1 Tc = 12.6
Chimera 1 TC = 4.16 [10, 11]

Quantum ferromagnet
Pegasus 1 AC = 13.85
Chimera 1 AC = 5.05

Classical spin-glass
Pegasus 400 TC = 0
Chimera 400 TC = 0 [10]

Table 2: Phase transitions based on Binder-cumulant collapses for models with up to 1176-qubits in
Pegasus and 1152-qubits in Chimera

7.2 Time-to-Solution Results in Spin Glasses

This section considers several standard and state-of-the-art classical optimization methods
for random disordered models:

• Greedy descent: a simple algorithm that descends the energy landscape by single bit
flips.

• Simulated annealing: a standard heuristic algorithm that exploits thermal excitations
to search a classical energy landscape and relax upon a minimizing solution [13].

• Parallel tempering: an algorithm that explores the landscape in multiple parallel local
searches, each with differing degrees of thermal excitations [14].

Performance of these methods on Chimera-structured spin-glasses is known to be strongly
enhanced by incorporating large-area local-search moves [15] or Houdayer moves [16].
This subsection demonstrates that the impact of these accelerator methods is significantly
reduced for the Pegasus topology. TTS results presented in the accompanying figures are
restricted to typical case performance (median with respect to instance behavior), but qual-
itatively similar patterns are present in other quantiles.

Greedy descent quickly fails to determine the minima as system size increases. We consider
instead a Hamze de-Freitas Selby (HFS) greedy descent method [15, 17], using N random
trees of treewidth 14, determined by the minimum-degree heuristic [18]. We perform an
exact minimization over variables in a randomly selected tree, and iterate until energy no
longer decreases—specifically until every variable has been optimized at least once since
the last energy decrease. A related method has been found to be very successful on a variety
of Chimera structured benchmarks [15], the difference here being that we choose a standard
heuristic for tree construction that is applicable to any graph, which less fully exploits the
lattice symmetry.

Figure 11, left side, shows the properties of the subgraphs used in the greedy descent,
specifically the number of vertices |V| and edges |E|within the subgraphs compared to the
full graph. Measuring the subgraphs produced by the minimum-degree heuristic method,
we notice changes of behavior at treewidth 5 in Chimera and treewidth 14 in Pegasus.
These are not sensitive to lattice size, except for in very small graphs, and reflect, in some
sense, sweet spots for decomposition algorithms due to the cellular nature of the graphs.
Figure 11, right side, shows the typical TTS where treewidth has been optimized. With
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Figure 11: Iterations over graphs determined by the minimum-degree heuristic in HFS greedy de-
scent. Left figure: Effectiveness of the minimum-degree heuristic, as measured by the mean frac-
tion of vertices and edges that are contained entirely in the tree that is marginalized. We see a cusp
for Chimera at treewidth 5, reflecting the ability of the algorithm to begin sampling over full cells,
whereas a cusp for Pegasus occurs at treewidth 14. Right figure: Median time to solution for HFS
greedy descent over 100 random instances of RANinf at each system size; TTS is significantly longer
in Pegasus than in Chimera at comparable size. Treewidth was optimized (from 1 to 16) over a test set.
Error bars are determined by a 90% bootstrap-confidence interval with respect to instances. The im-
plementation combined MATLAB with a C inner loop on single threaded 2.6 GHz CPUs, and is suit-
able for generic sparse graphs, although significant optimizations are possible for smaller treewidth
graphs. System size is shown on a quadratic scale (proportional to the lattice linear dimension).

this optimization in place, we find that the RANinf Pegasus benchmarks are significantly
harder to optimize at equivalent size.

For simulated annealing we consider two variations on the update rule:

• SA: Metropolis algorithm [13]

• SA(CG): eight-qubit conditional Gibbs sampling, an accelerator

The eight-qubit sets are fixed and disjoint, covering all variables, and clusters consist of
four vertical and four horizontal qubits located at minimum distance in space (in both
Chimera and Pegasus). There is a hierarchy of large-area local-search moves of this kind
known to perform very well in Chimera structured problems [15]. These moves are ef-
fective in Chimera because many of the interactions are captured within eight-qubit cell
blocks. The area-move scale presented “8” is somewhat of a sweet spot both for Pegasus
and Chimera, but fewer interactions are tidily packaged this way in Pegasus. Our version
of SA uses a geometric schedule, where annealing time (relative to restarts) has been op-
timized for each combination of algorithm, topology and system size.3 Figure 12 left side,
shows the result for each method on RAN1 instances. Whereas eight-qubit cluster moves
can accelerate solution search for Chimera, these have significantly less impact on Pegasus
spin glasses, as expected.

Finally, we looked at the performance of parallel tempering, with two variations:

• PT: without Houdayer moves [14]

3Specifically T = Tmax(Tmin/Tmax)i/n, with a fast mixing initial temperature Tmax = 1/
√

∑ij〈J2
ij〉 and a final

temperature with very low rates of excitation Tmin = −2/ log[0.99−1/N − 1], N being the number of variables.
The anneal is completed by a greedy descent from the final temperature, to ensure we do not miss local minima.

Copyright © D-Wave Systems Inc.



Next-Generation Topology 19

25 100 225 400 625 900

Number of variables

10 -4

10 -2

10 0

10 2
T

im
e

, 
s
e

c
o

n
d

s

Chimera-SA

Chimera-SA(CG)

Pegasus-SA

Pegasus-SA(CG)

25 100 225 400 625 900

Number of variables

10 -4

10 -2

10 0

T
im

e
, 

s
e

c
o

n
d

s

PT Chimera

PT-ICM Chimera

PT Pegasus

PT-ICM Pegasus

25 100 225 400 625 900

Number of variables

10 -4

10 -2

10 0

T
im

e
, 
s
e
c
o
n
d
s

PT Chimera

PT-ICM Chimera

PT Pegasus

PT-ICM Pegasus

Figure 12: Median time to solution for RAN1 and RANinf spin-glass problems running C++ im-
plementations of several heuristics suitable for generic sparse graphs on single threaded 2.6 GHz
CPUs. Bootstrapped error bars are small compared to marker size, and omitted. Left figure: simu-
lated annealing on RAN1. For simple test cases with eight-qubit clusters, the impact of large-area
local-search moves on TTS is more significant in Chimera. Typical TTS by rate-optimized simulated
annealing heuristics is longer on Pegasus graphs. This difference becomes more pronounced in mov-
ing to RANinf instances. Center figure: parallel tempering on RAN1. Houdayer moves reduce typical
TTS for Chimera graphs larger than 512 variables (C8), but are not useful in Pegasus graphs up to the
sizes presented. Typical TTS by parallel tempering is longer on Pegasus graphs. Right figure: paral-
lel tempering on RANinf. Houdayer moves enhance TTS for Chimera graphs at all scales, but have a
small impact on Pegasus TTS. Typical TTS by vanilla parallel tempering is longer on Chimera graphs,
but after exploiting the clustering present with ICM we see that there is no significant difference in
TTS.

• PT-ICM: with Houdayer moves at all temperatures, also called iso-energetic cluster
moves (ICM) [16]

Single-spin updates used the Metropolis algorithm and the temperature ladder was tuned
to good behaviour on the typical case for each system size and topology.4

The advantages of Houdayer moves are intuitively limited by the percolation threshold
and dimensionality, so we anticipate a stronger relative impact in Chimera. Figure 12, cen-
ter and right side, show results for the typical case: Pegasus RAN1 is more challenging
than Chimera RAN1, whereas in RANinf, after using the ICM accelerator, typical behavior
for Chimera and Pegasus is very similar. More importantly, the effectiveness of Houdayer
moves is lower in Pegasus. Chimera RAN1 instances are in part easier than RANinf due to
the degeneracy of the ground state, which we believe explains the discrepancy in TTS and
lower sensitivity to ICM acceleration.

A good indicator of algorithmic hardness is the scaling of TTS: the larger the instances
for the problem classes and algorithms presented, the slower to solve. Certain prefactors
polynomial in the system size can be assumed in the TTS, but do not account for the major
part of this scaling. In these experiments we use a self-consistent test for the ground state. In
Figure 11 we marked the total run-time—as TTS approaches this value we can anticipate
a significant bias (towards smaller TTS) owing to the ground state being misidentified,
making it easier to ”solve”. We truncated the curves to mitigate for this bias; resampling
indicates the bias is small in the results shown. Similarly, in figure 12 the ground state was
determined self-consistently by comparing results over all algorithms, adjusting upwards
the allowed run time for larger instances. At N > 1000 variables, very long run times were
required to mitigate for bias in harder instances, and curves are truncated accordingly.

4For the fixed interval [Tmin, Tmax ] spacings were chosen to ensure mean replica exchange rate of 0.4 across all
instances.
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With accelerator tricks applied, Pegasus spin-glass problems require longer to solve than
Chimera ones in the median, though this difference is negligible in the RANInf case for
PT-ICM. This result should be interpreted with care: these are different problems and there
is no obvious reason one ought to be invariably harder than the other, in the median and
other quantiles.5 For example, lower connectivity in Chimera may make its energy barriers
smaller and its local degeneracy higher, but it also makes it far less homogeneous in space.6

The more important points to acknowledge are that (1) we have flexibility in the Pegasus
framework to model Chimera-like benchmarks, but not vice-versa, at least not without
embedding; (2) Pegasus algorithm performance is less amenable to the standard accelerator
tricks that have been so successful on Chimera.

8 Conclusion
The flexible architecture of D-Wave’s next-generation of processors introduces qubits with
a higher degree of connectivity and a new type of coupler in a family of topologies, Pe-
gasus. This new topology has significant advantages over previous generations, including
more efficient embeddings for many useful classes of problems.

In this paper we describe, and provide a formulaic description for, the new topology. We
describe methods for translating known embeddings from Chimera to Pegasus and note
some key advantages; for example:

• Cliques and bicliques. Pegasus PM supports embedding cliques of up to size 12(M−
1), with chains of length M and M + 1, and bicliques up to K12M−20,12M−20, with
uniform chain length of M− 1.

• Lattices. Pegasus supports a (M − 1) × (M − 1) × 12 cubic lattice in PM with uni-
form chainlength of 2. We also show 2d lattice embeddings similar to those used for
materials science research.

• Treewidth. Pegasus PM has a treewidth of between 12M− 11 to 12M− 4; for compar-
ison, treewidth of a Chimera CM graph is 4M.

• Odd couplers. We described how this new type of coupler, in addition to increasing
connectivity, might be used in a simple error-correction scheme that increases the
energy scale of the logical problem represented on the Pegasus topology.

We present results of our initial test of the topology in the following categories:

• Heuristic embeddings. Our comparison of embeddings in P6 (with 680 qubits and
4484 couplers) versus C16 (with 2048 qubits and 6016 couplers) for a diverse set of
problems shows Pegasus consistently achieving around a 50-60% reduction in chain-
length over Chimera.

5We find evidence for some very hard RAN1 instances; for example, in the higher quartiles.
6There is less “self-averaging” of interactions, which can contribute to phenomena such as Griffiths singulari-

ties.
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• Native structured Ising models. Simple Pegasus benchmarks differ qualitatively from
the corresponding Chimera ones, indicating that the topology may support larger en-
ergy barriers and thereby offer more opportunities for differentiation between clas-
sical and quantum dynamics. Techniques commonly in use to accelerate optimiza-
tion (and sampling) in Chimera-structured problems seem less potent on Pegasus-
structured problems.
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