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Overview

We introduce qbsolv, a tool that solves large quadratic unconstrained
binary optimization (QUBO) problems by partitioning into subprob-
lems targeted for execution on a D-Wave system. Using a classical
subproblem solver rather than quantum annealing, qbsolv delivers
state-of-the-art numerical results and executes almost twice as fast as
the best previously known implementation. We have released qbsolv

as open-source software to foster greater use and experimentation in
such partitioning solvers and to establish the QUBO form as a target
for higher-level optimization interfaces.
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Summary
Quantum annealing systems implemented by D-Wave Systems offer a very different com-
puting substrate from classical computers, which requires new programming tools to en-
able widespread use. The quadratic unconstrained binary optimization (QUBO) problem
serves as a useful intermediate problem representation, as it closely matches the hardware
format and many real-world problems can be easily mapped to it. However, QUBO in-
stances arising from real-world problems do not necessarily match the constrained size and
connectivity of a given system. We describe a solver, qbsolv, that reads a QUBO instance
in a general format, partitions it into subQUBOs, solves the subQUBOs, and combines the
results to form a solution to the original instance. Individual subQUBOs may be solved via
a D-Wave system or a classical tabu search solver. Using the classical subQUBO solver, our
solver finds competitive solutions almost twice as quickly as the best known alternatives.
Solving the subQUBOs on a D-Wave system, our solver finds competitive solutions though
with no speed advantage. These results demonstrate that large QUBOs can be effectively
solved by a solver using quantum annealing hardware of limited size and connectivity. We
expect this proof of concept to spark further work both in such solvers and in tools and
techniques to map real-world problems to the QUBO format.
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1 Introduction
Quantum annealing (QA) systems such as those developed by D-Wave Systems will pro-
vide one path beyond the anticipated end of Moore’s Law performance improvements
for classical computers. However, the programming model implemented by QA is very
different from that of the classical von Neumann architecture and requires a much closer
mapping of problem to computer (at this stage of QA development). This difference re-
quires application developers to map to new problem formulations, and they require that
the time spent on such fundamental rethinking be amortized over multiple machine gen-
erations. Thus, generality of programming abstractions is essential.

The quadratic unconstrained binary optimization problem, or QUBO [1], is a close match
to the native (Ising model) machine instruction of D-Wave systems. Many problems have
been shown to map to the QUBO form [2, 3], so it is an attractive intermediate representa-
tion. However, in order to be solved directly on a D-Wave platform, a given input instance
in general QUBO form must be partitioned and mapped to a restricted format known as the
Chimera graph [4]. The work of Glover et al. [5] and extensions in Wang et al. [6, 7] show
that decomposing large QUBO instances into subQUBOs and combining the sub-solutions
can be an efficient and effective solution approach. This work describes a new algorithm
motivated by Glover’s algorithm, with the subQUBO size selected to fit on a given D-Wave
system, for eventual quantum acceleration. With the current implementation the user may
select to execute subQUBOs either on a D-Wave system or on qbsolv’s internal classical
tabu search solver. Both choices deliver solutions that are competitive with the best pub-
lished results. Further, purely classical execution delivers execution speeds that are almost
twice as fast as the best published results.

While these results are encouraging, we view them more as validating the approach of
creating a general QUBO solver suitable for a variety of problem types rather than this
particular implementation. Independent of the exact algorithm used, large-neighborhood
(subQUBO) updates can improve the performance of local search algorithms, and solving
the subQUBOs is achievable with current QA hardware. As expressed by Booth et al. [8],
the availability of general QUBO solvers (especially those accelerated by quantum com-
puters) may spur the development of higher-level tools and methods that target the QUBO
form as a preferred intermediate representation.

2 The Quadratic Unconstrained Binary
Optimization Problem
The QUBO problem is defined, for Q an n x n upper-triangular matrix of real weights and
x a vector of n binary variables, as minimizing the function

f (x) = ∑
i

Qiixi + ∑
i<j

Qijxixj

or, more concisely,
min

x∈{0,1}n
xTQx.

Copyright © D-Wave Systems Inc.
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With trivial transformations, the QUBO form is equivalent to the unconstrained binary
quadratic program (UBQP) [5], Ising model [9], and undirected graphical model [10] forms.

3 Algorithm and Implementation
The hybrid classical/quantum algorithm described in this work uses a two-level approach
— the first level being the full problem QUBO instance and the second level being the sub-
QUBO sized to fit on the underlying D-Wave system. The algorithm iterates through trials,
with each trial consisting of a set of calls to a subQUBO solver (ideally the D-Wave system)
for global minimization and a call to tabu search for local minimization. (For ease of appli-
cation development without access to a quantum system, the subQUBO may be executed
either on a D-Wave system or on an internal classical solver. We refer to this as ”subQUBO
execution”.) The hybrid nature of the algorithm exploits the complementary strengths of
the D-Wave solver and tabu search: the D-Wave quantum-annealing system is very good
at exploring diverse regions of the state space but its limited precision constrains its ability
to get to an exact minimum quickly [13, 14]. By contrast, the tabu search can quickly find
an exact minimum within a neighborhood but sometimes struggles to escape from that
neighborhood. Alternatively, the algorithm can be viewed as a large-neighborhood local
search [15], with tabu improvements after every iteration. Similar approaches were stud-
ied by Rosenberg et al. [16] and Albash et al. [17], with many suggested variations and
refinements.

The algorithm itself is documented in Algorithm 1. The key data structure maintained is
the index vector, which orders the variables by decreasing impact on the value of the solu-
tion. The impact of a variable is the increase in objective-function value (i.e., less optimal)
that occurs when the variable is negated in the current solution. (Assuming the current
solution is a local minimum, the value will not decrease.) We expect variables of larger
impact to be more strongly determined.

After finding an initial value (Vbest), solution (Qbest), and index (lines 8-10), the main
loop (lines 13-33) repeats the two phases of the computation. The first phase splits the input
QUBO instance into subQUBOs that fit on a given system (currently about 45 variables on
a 1000-qubit D-Wave 2X system) that are then executed. The fraction constant denotes the
fraction of the QUBO instance that is partitioned into subQUBOs; it is typically in a range
between 0.05 and 0.15. Each subQUBO’s variables are contiguous in the index vector,
partly as a vestige of Glover’s algorithm and partly to solve portions of the problem whose
variables have roughly equal impact on the solution. To optimize over a set of variables S,
we clamp the variables outside of S. That is, we consider the QUBO instance on variables
S that results from fixing the variables not in S to their values in the current best solution.
More precisely, if the current solution is x∗, then the new subQUBO on S is

fS(xS) = ∑
i∈S

(Qii + di)xi + ∑
i,j∈S
i<j

Qijxixj

where di is the contribution to the linear term in xi provided by the variables that are
clamped:

di = ∑
j/∈S

(Qij + Qji)x∗j .

Copyright © D-Wave Systems Inc.



Partitioning Optimization Problems for Hybrid Classical/Quantum Execution 3

Algorithm 1 Partitioning algorithm implemented by qbsolv

1: Input: QUBO instance
2: # Vbest is the lowest value found to date
3: # Qbest is the solution bit vector corresponding to the lowest value so far
4: # index is the indices of the bits in the solution, sorted from
5: # most to least impact on value
6:

7: # Get initial estimate of minimum value and backbone
8: Qtmp← random 0/1 vector
9: (Vbest, Qbest)← TabuSearch(QUBO, Qtmp)

10: index← OrderByImpact(QUBO, Qbest)
11: passCount← 0
12: Qtmp← Qbest

13: while passCount < numRepeats do
14: for i = 0; i < fraction ∗ Size(QUBO); i += subQuboSize do
15: # select subQubo with other variables clamped
16: subQubo← Clamp(QUBO, Qtmp, index[i : i+subQuboSize−1])
17: (subV, subQ)← DWaveSearch(subQubo)
18: # project onto full solution
19: Qtmp[index[i : i+subQuboSize−1]]← subQ

20: end for
21: (V, Qnew)← TabuSearch(QUBO, Qtmp)
22: index← OrderByImpact(QUBO, Qnew)
23: if V < Vbest then
24: Vbest← V; Qbest← Qnew

25: passCount← 0
26: else if V == Vbest then
27: Qbest← Qnew

28: passCount++
29: else
30: passCount++
31: end if
32: Qtmp← Qnew

33: end while
34: Output: Vbest, Qbest

Copyright © D-Wave Systems Inc.
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After the subQUBO is solved, the current solution is updated with the appropriate bits
from the subQUBO solution vector. The goal is that the new candidate solution, built from
the prior candidate solution and updates from the subQUBO results (line 19), will jump out
of a local minimum. This new Qtmp is then input to a tabu search that will find a new local
minimum. Every time a new best solution is found, the main loop’s passCount iteration
counter is reset (lines 23-25); the algorithm will make up to numRepeats passes to discover
a new best solution.

The D-Wave and tabu phases are complementary in numerical precision. D-Wave systems
have limited precision and are affected by integrated control error; for these and other rea-
sons (including the heuristic nature of QA), solutions to the subQUBOs returned may not
be global or even local optima. However, the classical portion of the algorithm, including
the main loop and the tabu search, is calculated with the same precision with which the
original QUBO format is specified: IEEE double-precision (64-bit) floating-point values.

The current method of mapping the logical subQUBO to the physical topology, via complete-
graph embedding, is inefficient in terms of the number of variables that can be embedded.
See Section 5 for a more detailed discussion of this effect.

In this description, we focus on the important concepts in the algorithm. In practice, an
optimized implementation of the classical portions of the algorithm is also important. We
omit many details of that optimization in the interests of clarity of exposition; e.g., the
variables that hold the expected change in objective-function value from flipping each bit
are not shown.

This algorithm builds on the concept from Glover’s algorithm [11] of strongly determined
variables, which are those that frequently receive particular values in the best solutions pre-
viously discovered. This is related to the backbone concept from the constraint-satisfaction
world, which denotes the set of variables that are fixed in all satisfying solutions. The algo-
rithm tries to identify strongly determined variables constructively, because the analogous
set of optimal assignments is not known in advance. The algorithm executes a number of
trials, each consisting of a phase of tabu search and a phase of fixing or freeing selected
variables, selecting a successively smaller subQUBO of the most impactful variables, solv-
ing a coarsened problem, and projecting those results into the next larger problem. (See also
[12] for related work.)

4 Performance
To measure the performance of this new algorithm, we have focused on the UBQPs col-
lected by Beasley and residing in the ORlib repository [18, 19]. (A UBQP instance can be
trivially transformed to a QUBO instance.) These problems range in size up to 2500 vari-
ables with significant density; we focus on the ten 2500-variable problems. The results
from Wang et al. [6] are the best results previously published. Wang et al. obtained their
results on a PC running Windows XP with a Pentium 2.83 GHz CPU and 8 GB RAM. The
qbsolv results below were obtained executing on a single core of a MacBook Pro with an
Intel Core™ i7 2.3 GHz CPU and 16 GB RAM.

Copyright © D-Wave Systems Inc.
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Instance
Best

value
from [6]

Time
from [6]

Best
qbsolv
value

qbsolv
% gain

qbsolv
non-

target
time

qbsolv
non-

target
speed-up

qbsolv
target
time

qbsolv
target

speed-up

1 1,515,944 11 1,515,944 0.0000 19.1 0.6 4.7 2.3
2 1,471,392 101 1,471,392 0.0000 21.2 4.8 7.1 14.3
3 1,414,192 49 1,414,192 0.0000 25.2 1.9 10.9 4.5
4 1,507,701 6 1,507,701 0.0000 13.5 0.4 2.2 2.8
5 1,491,816 14 1,491,816 0.0000 27.0 0.5 15.3 0.9
6 1,469,162 25 1,469,162 0.0000 33.0 0.8 22.5 1.1
7 1,479,040 48 1,479,040 0.0000 17.2 2.8 1.2 38.5
8 1,484,199 20 1,484,199 0.0000 22.5 0.9 11.0 1.8
9 1,482,413 51 1,482,413 0.0000 14.3 3.6 0.9 57.8

10 1,483,355 55 1,482,870 -0.0003 19.2 2.9 35.4 1.6
Total 380 212.2 111.2

Table 1: Comparison between Wang et al. [6] and qbsolv results and timings for the ten 2500-
variable problems from the Beasley ORlib repository. These results are achieved solely with classical
execution, i.e., no contribution from the D-Wave quantum system.

Table 1 compares the results from Wang et al. to the results produced by qbsolv. The
columns contain the instance number, the best previous value of the objective function
(which [6] finds for all instances), the time for the PR1 algorithm from [6] (since PR1 is on
average faster than PR2) in seconds, the best qbsolv value of the objective function in non-
target mode (see below), the gain (or loss, if negative) in value compared to [6], the time in
seconds for qbsolv in non-target mode, the non-target-mode speed-up of qbsolv over PR1,
the time in seconds for qbsolv in target mode, and the target-mode speed-up of qbsolv
over PR1. The qbsolv timings reported in Table 1 include the time spent partitioning the
problem into subQUBOs and the time spent solving those subQUBOs. In these results
all subQUBO-solution time is spent executing purely classically by qbsolv’s built-in tabu
solver. To simplify comparison of successive results, qbsolv was run with a fixed random
seed for each execution, yielding deterministic results when executed classically. Thus the
timings shown are for a single execution for each instance.

By default, the qbsolv algorithm continues looking for a better answer after it achieves a
new best-to-date value of the objective function. The “non-target” times here include this
time spent after the final answer is found. When the user knows the best possible value
(analytically or by construction), qbsolv’s target option allows that value to be specified,
causing execution to halt when that best answer is found and saving any time that would
otherwise be spent looking for a better answer. Both non-target and target times are re-
ported in Table 1, as it is not clear that Wang et al.’s algorithm can also save that time.
(Instance 10 is solved faster in non-target mode because qbsolv’s stopping heuristic mis-
takenly believes it has found the minimum when it has not; target mode continues until it
has found the minimum.)

The qbsolv numerical results are nearly the same as the best from the previous literature,
though consuming 56% of the total wall-clock time for the non-target case and 29% of the
wall-clock time for the target case.

Rosenberg et al. [16] report objective-function values and execution time for their partition-

Copyright © D-Wave Systems Inc.
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ing solver, also intended to solve subQUBOs on quantum annealing hardware when that
execution delivers a performance advantage. That work also reports objective-function val-
ues and execution time, with the number of executed system-sized subQUBOs measured
and wall-clock time calculated. That algorithm is implemented in Python while qbsolv is
implemented in optimized C. With this implementation difference besides the calculated
D-Wave execution time, it is not clear that the Rosenberg timings, which are roughly an
order of magnitude slower than the qbsolv timings reported here (1731 seconds for all 10
Beasley 2500-variable problems total compared to 212 seconds), indicate anything about
the relative merits of the two algorithms.

5 Discussion
A partitioning solver accepting a standard form of a widely relevant intermediate repre-
sentation appears to be a useful implementation target for higher-level tools. The potential
usefulness of qbsolv as a back end in such a tool stack has been demonstrated via a proto-
type constraint-satisfaction tool, which generates the QUBO format described in Appendix
A and solves it via qbsolv. Connections to widely used optimization interfaces such as the
General Algebraic Modeling System (GAMS) [20] or AMPL [21] appear attractive.

This algorithm can reasonably be applied to very large optimization problems. The largest
problem we have attempted to solve with qbsolv is map-coloring the 3108 continental
US counties, with a color-encoding that creates a QUBO instance of 12,432 variables. The
qbsolv algorithm solves that problem in 202 seconds using the target option.

At many junctures, we chose one of a set of plausible approaches for implementation; many
not-chosen approaches may yield better results than the current implementation. Some of
the most important topics we see for experimentation are:

• Methods for embedding subQUBOs. The inner loop of the algorithm, which ex-
tracts subQUBOs and executes them, will often execute a subQUBO that has not
executed previously. A mandatory step in executing such a subQUBO instance on
a D-Wave system is mapping the variables and pairwise interactions of the logi-
cal problem to physical qubits and couplers. For real-world problems, this is often
done via a heuristic embedding approach [22], but that can be unacceptably slow
for qbsolv’s needs. Instead, at initialization time the algorithm embeds a complete
graph of the maximum size supported by the targeted system, re-using that same
embedding for each call to DWaveSearch. The simple mapping of subQUBO vari-
ables and influences to clique chains is very fast but resource-inefficient in that early
anecdotal evidence is that many subQUBOs will be much more sparsely connected
than a complete graph. Improved embedding schemes will enable the algorithm to
use a bigger subQUBO size and also improve the performance of the D-Wave system.
As discussed by Albash et al. [17] and Rosenberg et al. [16], the emergence of fast,
resource-efficient techniques for mapping subproblems to QA hardware is essential
for the success of an iterative solver.

• Methods for partitioning the input QUBO instance. qbsolv uses a backbone-based
method inspired by Glover et al. [7], which may result in getting stuck at a local
minima despite the use of large-neighborhood moves. Other partitioning strategies

Copyright © D-Wave Systems Inc.
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may yield better results.

6 Open-Source: Use and Collaboration
With our primary goals being to enable application use of D-Wave systems and find bet-
ter partitioning solvers that support acceleration via quantum annealers, we chose to re-
lease qbsolv via an open-source license to promote its use, serve as a viable, sustainable
code base that will foster such further work, and enable ready comparisons between dif-
ferent algorithms implemented within it. The qbsolv project resides at http://github.
com/dwavesystems/qbsolv. Besides the code itself, there is a man page and an example.
Questions or problems may be communicated via the Github site.

The source code may be built and executed purely classically via the built-in tabu solver on
OS X and Linux systems. Users wishing to execute on a quantum-processing unit (QPU) (or
simulated) D-Wave system will require additional software; contact the authors or D-Wave
for details.

We welcome collaborators wanting to experiment with better versions of the qbsolv algo-
rithms. We will administer the project balancing the two goals of fostering diverse experi-
mentation and delivering usable, robust software.

7 Conclusion
In this paper, we describe a new implementation of a large-neighborhood local search al-
gorithm that combines tabu search with partitioning a large QUBO instance into pieces
that fit on current quantum annealing systems. We show that the performance of qbsolv,
without acceleration from quantum annealing, is competitive in numerical results and su-
perior in wall-clock performance compared with other QUBO solvers. The input QUBO
instance is expressed in a file format derived from the DIMACS CNF format [23], which
could be used as a common format by all tools writing and reading QUBO instances. We
offer qbsolv as a proof of the concept of a large-QUBO solver that executes subQUBOs
using quantum annealing, expecting that improved algorithms will likely arise. With the
emergence of robust large-QUBO solvers, application developers and upper-level tools can
map problems of arbitrary size and connectivity to the QUBO form and be confident there
will be effective means of solution.
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A QUBO Input File Format
The input file format is modeled on the DIMACS Satisfiability File Format [23]. QUBO
files, typically named with a .qubo file extension, are ASCII, line-based, and may contain
four types of lines:

• Comments: denoted by a ”c” in the first column.

• Program: denoted by a ”p” in the first column, the single program line per file
must be the first non-comment line in the file, and must contain the following space-
separated fields in the following order:

– p: the problem-line sentinel

– qubo: file type; qubo is the only value currently supported

– target: topology; currently supported values include 0 or unconstrained

– maxDiagonals: the number of diagonal elements in the problem

– nDiagonals: the number of nonzero diagonal elements in the problem

– nElements: the number of nonzero off-diagonal elements in the problem

• Diagonal: the Qii from Section 2. I.e., a triple consisting of the variable number in
both the first and second positions and the variable’s weight, which can be any in-
teger or float value, in the third position. Variable numbers, for both Diagonal and
Element lines, must be between 0 and maxDiagonals-1 inclusive.

• Element: the Qij from Section 2. I.e., a triple consisting of the distinct variable num-
bers of the two variables the element connects in the first and second positions and
the connection’s strength, which can be any integer or float value (excluding zero), in
the third position.

The number of Diagonal lines must equal the nDiagonal value in the program line and
the number of Element lines must equal the nElements value. While conventionally all
Diagonal lines appear before any Element lines, Diagonal and Element lines may be freely
intermixed in the file.

Listing 1: Example QUBO File

1 c s t a r t with a comment

2 p qubo 0 4 4 6

3 c diagonals follow

4 0 0 3.4

5 1 1 4.5

6 2 2 2.1

7 3 3 -2.4

8 c elements follow

9 0 1 2.2

10 0 2 -3.4

11 1 2 4.5

12 c any comment you want

13 0 3 -3.2

14 1 3 4.5678

15 2 3 1

Copyright © D-Wave Systems Inc.
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